Tryag File Manager
Home
||
Turbo Force
||
B-F Config_Cpanel
Current Path :
/
proc
/
self
/
root
/
proc
/
self
/
root
/
usr
/
include
/
c++
/
4.8.5
/
bits
/
Or
Select Your Path :
Upload File :
New :
File
Dir
//proc/self/root/proc/self/root/usr/include/c++/4.8.5/bits/hashtable.h
// hashtable.h header -*- C++ -*- // Copyright (C) 2007-2013 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // <http://www.gnu.org/licenses/>. /** @file bits/hashtable.h * This is an internal header file, included by other library headers. * Do not attempt to use it directly. @headername{unordered_map, unordered_set} */ #ifndef _HASHTABLE_H #define _HASHTABLE_H 1 #pragma GCC system_header #include <bits/hashtable_policy.h> namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION template<typename _Tp, typename _Hash> using __cache_default = __not_<__and_<// Do not cache for fast hasher. __is_fast_hash<_Hash>, // Mandatory to make local_iterator default // constructible and assignable. is_default_constructible<_Hash>, is_copy_assignable<_Hash>, // Mandatory to have erase not throwing. __detail::__is_noexcept_hash<_Tp, _Hash>>>; /** * Primary class template _Hashtable. * * @ingroup hashtable-detail * * @tparam _Value CopyConstructible type. * * @tparam _Key CopyConstructible type. * * @tparam _Alloc An allocator type * ([lib.allocator.requirements]) whose _Alloc::value_type is * _Value. As a conforming extension, we allow for * _Alloc::value_type != _Value. * * @tparam _ExtractKey Function object that takes an object of type * _Value and returns a value of type _Key. * * @tparam _Equal Function object that takes two objects of type k * and returns a bool-like value that is true if the two objects * are considered equal. * * @tparam _H1 The hash function. A unary function object with * argument type _Key and result type size_t. Return values should * be distributed over the entire range [0, numeric_limits<size_t>:::max()]. * * @tparam _H2 The range-hashing function (in the terminology of * Tavori and Dreizin). A binary function object whose argument * types and result type are all size_t. Given arguments r and N, * the return value is in the range [0, N). * * @tparam _Hash The ranged hash function (Tavori and Dreizin). A * binary function whose argument types are _Key and size_t and * whose result type is size_t. Given arguments k and N, the * return value is in the range [0, N). Default: hash(k, N) = * h2(h1(k), N). If _Hash is anything other than the default, _H1 * and _H2 are ignored. * * @tparam _RehashPolicy Policy class with three members, all of * which govern the bucket count. _M_next_bkt(n) returns a bucket * count no smaller than n. _M_bkt_for_elements(n) returns a * bucket count appropriate for an element count of n. * _M_need_rehash(n_bkt, n_elt, n_ins) determines whether, if the * current bucket count is n_bkt and the current element count is * n_elt, we need to increase the bucket count. If so, returns * make_pair(true, n), where n is the new bucket count. If not, * returns make_pair(false, <anything>) * * @tparam _Traits Compile-time class with three boolean * std::integral_constant members: __cache_hash_code, __constant_iterators, * __unique_keys. * * Each _Hashtable data structure has: * * - _Bucket[] _M_buckets * - _Hash_node_base _M_bbegin * - size_type _M_bucket_count * - size_type _M_element_count * * with _Bucket being _Hash_node* and _Hash_node containing: * * - _Hash_node* _M_next * - Tp _M_value * - size_t _M_hash_code if cache_hash_code is true * * In terms of Standard containers the hashtable is like the aggregation of: * * - std::forward_list<_Node> containing the elements * - std::vector<std::forward_list<_Node>::iterator> representing the buckets * * The non-empty buckets contain the node before the first node in the * bucket. This design makes it possible to implement something like a * std::forward_list::insert_after on container insertion and * std::forward_list::erase_after on container erase * calls. _M_before_begin is equivalent to * std::forward_list::before_begin. Empty buckets contain * nullptr. Note that one of the non-empty buckets contains * &_M_before_begin which is not a dereferenceable node so the * node pointer in a bucket shall never be dereferenced, only its * next node can be. * * Walking through a bucket's nodes requires a check on the hash code to * see if each node is still in the bucket. Such a design assumes a * quite efficient hash functor and is one of the reasons it is * highly advisable to set __cache_hash_code to true. * * The container iterators are simply built from nodes. This way * incrementing the iterator is perfectly efficient independent of * how many empty buckets there are in the container. * * On insert we compute the element's hash code and use it to find the * bucket index. If the element must be inserted in an empty bucket * we add it at the beginning of the singly linked list and make the * bucket point to _M_before_begin. The bucket that used to point to * _M_before_begin, if any, is updated to point to its new before * begin node. * * On erase, the simple iterator design requires using the hash * functor to get the index of the bucket to update. For this * reason, when __cache_hash_code is set to false the hash functor must * not throw and this is enforced by a static assertion. * * Functionality is implemented by decomposition into base classes, * where the derived _Hashtable class is used in _Map_base, * _Insert, _Rehash_base, and _Equality base classes to access the * "this" pointer. _Hashtable_base is used in the base classes as a * non-recursive, fully-completed-type so that detailed nested type * information, such as iterator type and node type, can be * used. This is similar to the "Curiously Recurring Template * Pattern" (CRTP) technique, but uses a reconstructed, not * explicitly passed, template pattern. * * Base class templates are: * - __detail::_Hashtable_base * - __detail::_Map_base * - __detail::_Insert * - __detail::_Rehash_base * - __detail::_Equality */ template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> class _Hashtable : public __detail::_Hashtable_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2, _Hash, _Traits>, public __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>, public __detail::_Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>, public __detail::_Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>, public __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits> { public: typedef _Key key_type; typedef _Value value_type; typedef _Alloc allocator_type; typedef _Equal key_equal; // mapped_type, if present, comes from _Map_base. // hasher, if present, comes from _Hash_code_base/_Hashtable_base. typedef typename _Alloc::pointer pointer; typedef typename _Alloc::const_pointer const_pointer; typedef typename _Alloc::reference reference; typedef typename _Alloc::const_reference const_reference; private: using __rehash_type = _RehashPolicy; using __rehash_state = typename __rehash_type::_State; using __traits_type = _Traits; using __hash_cached = typename __traits_type::__hash_cached; using __constant_iterators = typename __traits_type::__constant_iterators; using __unique_keys = typename __traits_type::__unique_keys; using __key_extract = typename std::conditional< __constant_iterators::value, __detail::_Identity, __detail::_Select1st>::type; using __hashtable_base = __detail:: _Hashtable_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2, _Hash, _Traits>; using __hash_code_base = typename __hashtable_base::__hash_code_base; using __hash_code = typename __hashtable_base::__hash_code; using __node_type = typename __hashtable_base::__node_type; using __node_base = typename __hashtable_base::__node_base; using __bucket_type = typename __hashtable_base::__bucket_type; using __ireturn_type = typename __hashtable_base::__ireturn_type; using __iconv_type = typename __hashtable_base::__iconv_type; using __map_base = __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>; using __rehash_base = __detail::_Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>; using __eq_base = __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>; // Metaprogramming for picking apart hash caching. using __hash_noexcept = __detail::__is_noexcept_hash<_Key, _H1>; template<typename _Cond> using __if_hash_cached = __or_<__not_<__hash_cached>, _Cond>; template<typename _Cond> using __if_hash_not_cached = __or_<__hash_cached, _Cond>; // Compile-time diagnostics. // When hash codes are not cached the hash functor shall not // throw because it is used in methods (erase, swap...) that // shall not throw. static_assert(__if_hash_not_cached<__hash_noexcept>::value, "Cache the hash code" " or qualify your hash functor with noexcept"); // Following two static assertions are necessary to guarantee // that local_iterator will be default constructible. // When hash codes are cached local iterator inherits from H2 functor // which must then be default constructible. static_assert(__if_hash_cached<is_default_constructible<_H2>>::value, "Functor used to map hash code to bucket index" " must be default constructible"); // When hash codes are not cached local iterator inherits from // __hash_code_base above to compute node bucket index so it has to be // default constructible. static_assert(__if_hash_not_cached< is_default_constructible< // We use _Hashtable_ebo_helper to access the protected // default constructor. __detail::_Hashtable_ebo_helper<0, __hash_code_base>>>::value, "Cache the hash code or make functors involved in hash code" " and bucket index computation default constructible"); // When hash codes are not cached local iterator inherits from // __hash_code_base above to compute node bucket index so it has to be // assignable. static_assert(__if_hash_not_cached< is_copy_assignable<__hash_code_base>>::value, "Cache the hash code or make functors involved in hash code" " and bucket index computation copy assignable"); public: template<typename _Keya, typename _Valuea, typename _Alloca, typename _ExtractKeya, typename _Equala, typename _H1a, typename _H2a, typename _Hasha, typename _RehashPolicya, typename _Traitsa, bool _Unique_keysa> friend struct __detail::_Map_base; template<typename _Keya, typename _Valuea, typename _Alloca, typename _ExtractKeya, typename _Equala, typename _H1a, typename _H2a, typename _Hasha, typename _RehashPolicya, typename _Traitsa> friend struct __detail::_Insert_base; template<typename _Keya, typename _Valuea, typename _Alloca, typename _ExtractKeya, typename _Equala, typename _H1a, typename _H2a, typename _Hasha, typename _RehashPolicya, typename _Traitsa, bool _Constant_iteratorsa, bool _Unique_keysa> friend struct __detail::_Insert; using size_type = typename __hashtable_base::size_type; using difference_type = typename __hashtable_base::difference_type; using iterator = typename __hashtable_base::iterator; using const_iterator = typename __hashtable_base::const_iterator; using local_iterator = typename __hashtable_base::local_iterator; using const_local_iterator = typename __hashtable_base:: const_local_iterator; private: typedef typename _Alloc::template rebind<__node_type>::other _Node_allocator_type; typedef typename _Alloc::template rebind<__bucket_type>::other _Bucket_allocator_type; using __before_begin = __detail::_Before_begin<_Node_allocator_type>; __bucket_type* _M_buckets; size_type _M_bucket_count; __before_begin _M_bbegin; size_type _M_element_count; _RehashPolicy _M_rehash_policy; _Node_allocator_type& _M_node_allocator() { return _M_bbegin; } const _Node_allocator_type& _M_node_allocator() const { return _M_bbegin; } __node_base& _M_before_begin() { return _M_bbegin._M_node; } const __node_base& _M_before_begin() const { return _M_bbegin._M_node; } template<typename... _Args> __node_type* _M_allocate_node(_Args&&... __args); void _M_deallocate_node(__node_type* __n); // Deallocate the linked list of nodes pointed to by __n void _M_deallocate_nodes(__node_type* __n); __bucket_type* _M_allocate_buckets(size_type __n); void _M_deallocate_buckets(__bucket_type*, size_type __n); // Gets bucket begin, deals with the fact that non-empty buckets contain // their before begin node. __node_type* _M_bucket_begin(size_type __bkt) const; __node_type* _M_begin() const { return static_cast<__node_type*>(_M_before_begin()._M_nxt); } public: // Constructor, destructor, assignment, swap _Hashtable(size_type __bucket_hint, const _H1&, const _H2&, const _Hash&, const _Equal&, const _ExtractKey&, const allocator_type&); template<typename _InputIterator> _Hashtable(_InputIterator __first, _InputIterator __last, size_type __bucket_hint, const _H1&, const _H2&, const _Hash&, const _Equal&, const _ExtractKey&, const allocator_type&); _Hashtable(const _Hashtable&); _Hashtable(_Hashtable&&); // Use delegating constructors. explicit _Hashtable(size_type __n = 10, const _H1& __hf = _H1(), const key_equal& __eql = key_equal(), const allocator_type& __a = allocator_type()) : _Hashtable(__n, __hf, __detail::_Mod_range_hashing(), __detail::_Default_ranged_hash(), __eql, __key_extract(), __a) { } template<typename _InputIterator> _Hashtable(_InputIterator __f, _InputIterator __l, size_type __n = 0, const _H1& __hf = _H1(), const key_equal& __eql = key_equal(), const allocator_type& __a = allocator_type()) : _Hashtable(__f, __l, __n, __hf, __detail::_Mod_range_hashing(), __detail::_Default_ranged_hash(), __eql, __key_extract(), __a) { } _Hashtable(initializer_list<value_type> __l, size_type __n = 0, const _H1& __hf = _H1(), const key_equal& __eql = key_equal(), const allocator_type& __a = allocator_type()) : _Hashtable(__l.begin(), __l.end(), __n, __hf, __detail::_Mod_range_hashing(), __detail::_Default_ranged_hash(), __eql, __key_extract(), __a) { } _Hashtable& operator=(const _Hashtable& __ht) { _Hashtable __tmp(__ht); this->swap(__tmp); return *this; } _Hashtable& operator=(_Hashtable&& __ht) { // NB: DR 1204. // NB: DR 675. this->clear(); this->swap(__ht); return *this; } _Hashtable& operator=(initializer_list<value_type> __l) { this->clear(); this->insert(__l.begin(), __l.end()); return *this; } ~_Hashtable() noexcept; void swap(_Hashtable&); // Basic container operations iterator begin() noexcept { return iterator(_M_begin()); } const_iterator begin() const noexcept { return const_iterator(_M_begin()); } iterator end() noexcept { return iterator(nullptr); } const_iterator end() const noexcept { return const_iterator(nullptr); } const_iterator cbegin() const noexcept { return const_iterator(_M_begin()); } const_iterator cend() const noexcept { return const_iterator(nullptr); } size_type size() const noexcept { return _M_element_count; } bool empty() const noexcept { return size() == 0; } allocator_type get_allocator() const noexcept { return allocator_type(_M_node_allocator()); } size_type max_size() const noexcept { return _M_node_allocator().max_size(); } // Observers key_equal key_eq() const { return this->_M_eq(); } // hash_function, if present, comes from _Hash_code_base. // Bucket operations size_type bucket_count() const noexcept { return _M_bucket_count; } size_type max_bucket_count() const noexcept { return max_size(); } size_type bucket_size(size_type __n) const { return std::distance(begin(__n), end(__n)); } size_type bucket(const key_type& __k) const { return _M_bucket_index(__k, this->_M_hash_code(__k)); } local_iterator begin(size_type __n) { return local_iterator(*this, _M_bucket_begin(__n), __n, _M_bucket_count); } local_iterator end(size_type __n) { return local_iterator(*this, nullptr, __n, _M_bucket_count); } const_local_iterator begin(size_type __n) const { return const_local_iterator(*this, _M_bucket_begin(__n), __n, _M_bucket_count); } const_local_iterator end(size_type __n) const { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); } // DR 691. const_local_iterator cbegin(size_type __n) const { return const_local_iterator(*this, _M_bucket_begin(__n), __n, _M_bucket_count); } const_local_iterator cend(size_type __n) const { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); } float load_factor() const noexcept { return static_cast<float>(size()) / static_cast<float>(bucket_count()); } // max_load_factor, if present, comes from _Rehash_base. // Generalization of max_load_factor. Extension, not found in // TR1. Only useful if _RehashPolicy is something other than // the default. const _RehashPolicy& __rehash_policy() const { return _M_rehash_policy; } void __rehash_policy(const _RehashPolicy&); // Lookup. iterator find(const key_type& __k); const_iterator find(const key_type& __k) const; size_type count(const key_type& __k) const; std::pair<iterator, iterator> equal_range(const key_type& __k); std::pair<const_iterator, const_iterator> equal_range(const key_type& __k) const; protected: // Bucket index computation helpers. size_type _M_bucket_index(__node_type* __n) const { return __hash_code_base::_M_bucket_index(__n, _M_bucket_count); } size_type _M_bucket_index(const key_type& __k, __hash_code __c) const { return __hash_code_base::_M_bucket_index(__k, __c, _M_bucket_count); } // Find and insert helper functions and types // Find the node before the one matching the criteria. __node_base* _M_find_before_node(size_type, const key_type&, __hash_code) const; __node_type* _M_find_node(size_type __bkt, const key_type& __key, __hash_code __c) const { __node_base* __before_n = _M_find_before_node(__bkt, __key, __c); if (__before_n) return static_cast<__node_type*>(__before_n->_M_nxt); return nullptr; } // Insert a node at the beginning of a bucket. void _M_insert_bucket_begin(size_type, __node_type*); // Remove the bucket first node void _M_remove_bucket_begin(size_type __bkt, __node_type* __next_n, size_type __next_bkt); // Get the node before __n in the bucket __bkt __node_base* _M_get_previous_node(size_type __bkt, __node_base* __n); // Insert node with hash code __code, in bucket bkt if no rehash (assumes // no element with its key already present). Take ownership of the node, // deallocate it on exception. iterator _M_insert_unique_node(size_type __bkt, __hash_code __code, __node_type* __n); // Insert node with hash code __code. Take ownership of the node, // deallocate it on exception. iterator _M_insert_multi_node(__hash_code __code, __node_type* __n); template<typename... _Args> std::pair<iterator, bool> _M_emplace(std::true_type, _Args&&... __args); template<typename... _Args> iterator _M_emplace(std::false_type, _Args&&... __args); template<typename _Arg> std::pair<iterator, bool> _M_insert(_Arg&&, std::true_type); template<typename _Arg> iterator _M_insert(_Arg&&, std::false_type); size_type _M_erase(std::true_type, const key_type&); size_type _M_erase(std::false_type, const key_type&); iterator _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n); public: // Emplace template<typename... _Args> __ireturn_type emplace(_Args&&... __args) { return _M_emplace(__unique_keys(), std::forward<_Args>(__args)...); } template<typename... _Args> iterator emplace_hint(const_iterator, _Args&&... __args) { return __iconv_type()(emplace(std::forward<_Args>(__args)...)); } // Insert member functions via inheritance. // Erase iterator erase(const_iterator); // LWG 2059. iterator erase(iterator __it) { return erase(const_iterator(__it)); } size_type erase(const key_type& __k) { return _M_erase(__unique_keys(), __k); } iterator erase(const_iterator, const_iterator); void clear() noexcept; // Set number of buckets to be appropriate for container of n element. void rehash(size_type __n); // DR 1189. // reserve, if present, comes from _Rehash_base. private: // Helper rehash method used when keys are unique. void _M_rehash_aux(size_type __n, std::true_type); // Helper rehash method used when keys can be non-unique. void _M_rehash_aux(size_type __n, std::false_type); // Unconditionally change size of bucket array to n, restore // hash policy state to __state on exception. void _M_rehash(size_type __n, const __rehash_state& __state); }; // Definitions of class template _Hashtable's out-of-line member functions. template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> template<typename... _Args> typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>::__node_type* _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>:: _M_allocate_node(_Args&&... __args) { __node_type* __n = _M_node_allocator().allocate(1); __try { _M_node_allocator().construct(__n, std::forward<_Args>(__args)...); return __n; } __catch(...) { _M_node_allocator().deallocate(__n, 1); __throw_exception_again; } } template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> void _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>:: _M_deallocate_node(__node_type* __n) { _M_node_allocator().destroy(__n); _M_node_allocator().deallocate(__n, 1); } template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> void _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>:: _M_deallocate_nodes(__node_type* __n) { while (__n) { __node_type* __tmp = __n; __n = __n->_M_next(); _M_deallocate_node(__tmp); } } template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>::__bucket_type* _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>:: _M_allocate_buckets(size_type __n) { _Bucket_allocator_type __alloc(_M_node_allocator()); __bucket_type* __p = __alloc.allocate(__n); __builtin_memset(__p, 0, __n * sizeof(__bucket_type)); return __p; } template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> void _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>:: _M_deallocate_buckets(__bucket_type* __p, size_type __n) { _Bucket_allocator_type __alloc(_M_node_allocator()); __alloc.deallocate(__p, __n); } template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>::__node_type* _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>:: _M_bucket_begin(size_type __bkt) const { __node_base* __n = _M_buckets[__bkt]; return __n ? static_cast<__node_type*>(__n->_M_nxt) : nullptr; } template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>:: _Hashtable(size_type __bucket_hint, const _H1& __h1, const _H2& __h2, const _Hash& __h, const _Equal& __eq, const _ExtractKey& __exk, const allocator_type& __a) : __hashtable_base(__exk, __h1, __h2, __h, __eq), __map_base(), __rehash_base(), _M_bucket_count(0), _M_bbegin(__a), _M_element_count(0), _M_rehash_policy() { _M_bucket_count = _M_rehash_policy._M_next_bkt(__bucket_hint); _M_buckets = _M_allocate_buckets(_M_bucket_count); } template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> template<typename _InputIterator> _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>:: _Hashtable(_InputIterator __f, _InputIterator __l, size_type __bucket_hint, const _H1& __h1, const _H2& __h2, const _Hash& __h, const _Equal& __eq, const _ExtractKey& __exk, const allocator_type& __a) : __hashtable_base(__exk, __h1, __h2, __h, __eq), __map_base(), __rehash_base(), _M_bucket_count(0), _M_bbegin(__a), _M_element_count(0), _M_rehash_policy() { auto __nb_elems = __detail::__distance_fw(__f, __l); _M_bucket_count = _M_rehash_policy._M_next_bkt( std::max(_M_rehash_policy._M_bkt_for_elements(__nb_elems), __bucket_hint)); _M_buckets = _M_allocate_buckets(_M_bucket_count); __try { for (; __f != __l; ++__f) this->insert(*__f); } __catch(...) { clear(); _M_deallocate_buckets(_M_buckets, _M_bucket_count); __throw_exception_again; } } template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>:: _Hashtable(const _Hashtable& __ht) : __hashtable_base(__ht), __map_base(__ht), __rehash_base(__ht), _M_bucket_count(__ht._M_bucket_count), _M_bbegin(__ht._M_bbegin), _M_element_count(__ht._M_element_count), _M_rehash_policy(__ht._M_rehash_policy) { _M_buckets = _M_allocate_buckets(_M_bucket_count); __try { if (!__ht._M_before_begin()._M_nxt) return; // First deal with the special first node pointed to by // _M_before_begin. const __node_type* __ht_n = __ht._M_begin(); __node_type* __this_n = _M_allocate_node(__ht_n->_M_v); this->_M_copy_code(__this_n, __ht_n); _M_before_begin()._M_nxt = __this_n; _M_buckets[_M_bucket_index(__this_n)] = &_M_before_begin(); // Then deal with other nodes. __node_base* __prev_n = __this_n; for (__ht_n = __ht_n->_M_next(); __ht_n; __ht_n = __ht_n->_M_next()) { __this_n = _M_allocate_node(__ht_n->_M_v); __prev_n->_M_nxt = __this_n; this->_M_copy_code(__this_n, __ht_n); size_type __bkt = _M_bucket_index(__this_n); if (!_M_buckets[__bkt]) _M_buckets[__bkt] = __prev_n; __prev_n = __this_n; } } __catch(...) { clear(); _M_deallocate_buckets(_M_buckets, _M_bucket_count); __throw_exception_again; } } template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>:: _Hashtable(_Hashtable&& __ht) : __hashtable_base(__ht), __map_base(__ht), __rehash_base(__ht), _M_buckets(__ht._M_buckets), _M_bucket_count(__ht._M_bucket_count), _M_bbegin(std::move(__ht._M_bbegin)), _M_element_count(__ht._M_element_count), _M_rehash_policy(__ht._M_rehash_policy) { // Update, if necessary, bucket pointing to before begin that hasn't moved. if (_M_begin()) _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin(); __ht._M_rehash_policy = _RehashPolicy(); __ht._M_bucket_count = __ht._M_rehash_policy._M_next_bkt(0); __ht._M_buckets = __ht._M_allocate_buckets(__ht._M_bucket_count); __ht._M_before_begin()._M_nxt = nullptr; __ht._M_element_count = 0; } template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>:: ~_Hashtable() noexcept { clear(); _M_deallocate_buckets(_M_buckets, _M_bucket_count); } template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> void _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>:: swap(_Hashtable& __x) { // The only base class with member variables is hash_code_base. // We define _Hash_code_base::_M_swap because different // specializations have different members. this->_M_swap(__x); // _GLIBCXX_RESOLVE_LIB_DEFECTS // 431. Swapping containers with unequal allocators. std::__alloc_swap<_Node_allocator_type>::_S_do_it(_M_node_allocator(), __x._M_node_allocator()); std::swap(_M_rehash_policy, __x._M_rehash_policy); std::swap(_M_buckets, __x._M_buckets); std::swap(_M_bucket_count, __x._M_bucket_count); std::swap(_M_before_begin()._M_nxt, __x._M_before_begin()._M_nxt); std::swap(_M_element_count, __x._M_element_count); // Fix buckets containing the _M_before_begin pointers that // can't be swapped. if (_M_begin()) _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin(); if (__x._M_begin()) __x._M_buckets[__x._M_bucket_index(__x._M_begin())] = &(__x._M_before_begin()); } template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> void _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>:: __rehash_policy(const _RehashPolicy& __pol) { size_type __n_bkt = __pol._M_bkt_for_elements(_M_element_count); __n_bkt = __pol._M_next_bkt(__n_bkt); if (__n_bkt != _M_bucket_count) _M_rehash(__n_bkt, _M_rehash_policy._M_state()); _M_rehash_policy = __pol; } template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>::iterator _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>:: find(const key_type& __k) { __hash_code __code = this->_M_hash_code(__k); std::size_t __n = _M_bucket_index(__k, __code); __node_type* __p = _M_find_node(__n, __k, __code); return __p ? iterator(__p) : this->end(); } template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>::const_iterator _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>:: find(const key_type& __k) const { __hash_code __code = this->_M_hash_code(__k); std::size_t __n = _M_bucket_index(__k, __code); __node_type* __p = _M_find_node(__n, __k, __code); return __p ? const_iterator(__p) : this->end(); } template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>::size_type _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>:: count(const key_type& __k) const { __hash_code __code = this->_M_hash_code(__k); std::size_t __n = _M_bucket_index(__k, __code); __node_type* __p = _M_bucket_begin(__n); if (!__p) return 0; std::size_t __result = 0; for (;; __p = __p->_M_next()) { if (this->_M_equals(__k, __code, __p)) ++__result; else if (__result) // All equivalent values are next to each other, if we // found a non-equivalent value after an equivalent one it // means that we won't find any more equivalent values. break; if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n) break; } return __result; } template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> std::pair<typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>::iterator, typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>::iterator> _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>:: equal_range(const key_type& __k) { __hash_code __code = this->_M_hash_code(__k); std::size_t __n = _M_bucket_index(__k, __code); __node_type* __p = _M_find_node(__n, __k, __code); if (__p) { __node_type* __p1 = __p->_M_next(); while (__p1 && _M_bucket_index(__p1) == __n && this->_M_equals(__k, __code, __p1)) __p1 = __p1->_M_next(); return std::make_pair(iterator(__p), iterator(__p1)); } else return std::make_pair(this->end(), this->end()); } template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> std::pair<typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>::const_iterator, typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>::const_iterator> _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>:: equal_range(const key_type& __k) const { __hash_code __code = this->_M_hash_code(__k); std::size_t __n = _M_bucket_index(__k, __code); __node_type* __p = _M_find_node(__n, __k, __code); if (__p) { __node_type* __p1 = __p->_M_next(); while (__p1 && _M_bucket_index(__p1) == __n && this->_M_equals(__k, __code, __p1)) __p1 = __p1->_M_next(); return std::make_pair(const_iterator(__p), const_iterator(__p1)); } else return std::make_pair(this->end(), this->end()); } // Find the node whose key compares equal to k in the bucket n. // Return nullptr if no node is found. template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>::__node_base* _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>:: _M_find_before_node(size_type __n, const key_type& __k, __hash_code __code) const { __node_base* __prev_p = _M_buckets[__n]; if (!__prev_p) return nullptr; __node_type* __p = static_cast<__node_type*>(__prev_p->_M_nxt); for (;; __p = __p->_M_next()) { if (this->_M_equals(__k, __code, __p)) return __prev_p; if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n) break; __prev_p = __p; } return nullptr; } template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> void _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>:: _M_insert_bucket_begin(size_type __bkt, __node_type* __node) { if (_M_buckets[__bkt]) { // Bucket is not empty, we just need to insert the new node // after the bucket before begin. __node->_M_nxt = _M_buckets[__bkt]->_M_nxt; _M_buckets[__bkt]->_M_nxt = __node; } else { // The bucket is empty, the new node is inserted at the // beginning of the singly-linked list and the bucket will // contain _M_before_begin pointer. __node->_M_nxt = _M_before_begin()._M_nxt; _M_before_begin()._M_nxt = __node; if (__node->_M_nxt) // We must update former begin bucket that is pointing to // _M_before_begin. _M_buckets[_M_bucket_index(__node->_M_next())] = __node; _M_buckets[__bkt] = &_M_before_begin(); } } template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> void _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>:: _M_remove_bucket_begin(size_type __bkt, __node_type* __next, size_type __next_bkt) { if (!__next || __next_bkt != __bkt) { // Bucket is now empty // First update next bucket if any if (__next) _M_buckets[__next_bkt] = _M_buckets[__bkt]; // Second update before begin node if necessary if (&_M_before_begin() == _M_buckets[__bkt]) _M_before_begin()._M_nxt = __next; _M_buckets[__bkt] = nullptr; } } template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>::__node_base* _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>:: _M_get_previous_node(size_type __bkt, __node_base* __n) { __node_base* __prev_n = _M_buckets[__bkt]; while (__prev_n->_M_nxt != __n) __prev_n = __prev_n->_M_nxt; return __prev_n; } template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> template<typename... _Args> std::pair<typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>::iterator, bool> _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>:: _M_emplace(std::true_type, _Args&&... __args) { // First build the node to get access to the hash code __node_type* __node = _M_allocate_node(std::forward<_Args>(__args)...); const key_type& __k = this->_M_extract()(__node->_M_v); __hash_code __code; __try { __code = this->_M_hash_code(__k); } __catch(...) { _M_deallocate_node(__node); __throw_exception_again; } size_type __bkt = _M_bucket_index(__k, __code); if (__node_type* __p = _M_find_node(__bkt, __k, __code)) { // There is already an equivalent node, no insertion _M_deallocate_node(__node); return std::make_pair(iterator(__p), false); } // Insert the node return std::make_pair(_M_insert_unique_node(__bkt, __code, __node), true); } template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> template<typename... _Args> typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>::iterator _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>:: _M_emplace(std::false_type, _Args&&... __args) { // First build the node to get its hash code. __node_type* __node = _M_allocate_node(std::forward<_Args>(__args)...); __hash_code __code; __try { __code = this->_M_hash_code(this->_M_extract()(__node->_M_v)); } __catch(...) { _M_deallocate_node(__node); __throw_exception_again; } return _M_insert_multi_node(__code, __node); } template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>::iterator _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>:: _M_insert_unique_node(size_type __bkt, __hash_code __code, __node_type* __node) { const __rehash_state& __saved_state = _M_rehash_policy._M_state(); std::pair<bool, std::size_t> __do_rehash = _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1); __try { if (__do_rehash.first) { _M_rehash(__do_rehash.second, __saved_state); __bkt = _M_bucket_index(this->_M_extract()(__node->_M_v), __code); } this->_M_store_code(__node, __code); // Always insert at the begining of the bucket. _M_insert_bucket_begin(__bkt, __node); ++_M_element_count; return iterator(__node); } __catch(...) { _M_deallocate_node(__node); __throw_exception_again; } } // Insert node, in bucket bkt if no rehash (assumes no element with its key // already present). Take ownership of the node, deallocate it on exception. template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>::iterator _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>:: _M_insert_multi_node(__hash_code __code, __node_type* __node) { const __rehash_state& __saved_state = _M_rehash_policy._M_state(); std::pair<bool, std::size_t> __do_rehash = _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1); __try { if (__do_rehash.first) _M_rehash(__do_rehash.second, __saved_state); this->_M_store_code(__node, __code); const key_type& __k = this->_M_extract()(__node->_M_v); size_type __bkt = _M_bucket_index(__k, __code); // Find the node before an equivalent one. __node_base* __prev = _M_find_before_node(__bkt, __k, __code); if (__prev) { // Insert after the node before the equivalent one. __node->_M_nxt = __prev->_M_nxt; __prev->_M_nxt = __node; } else // The inserted node has no equivalent in the // hashtable. We must insert the new node at the // beginning of the bucket to preserve equivalent // elements' relative positions. _M_insert_bucket_begin(__bkt, __node); ++_M_element_count; return iterator(__node); } __catch(...) { _M_deallocate_node(__node); __throw_exception_again; } } // Insert v if no element with its key is already present. template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> template<typename _Arg> std::pair<typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>::iterator, bool> _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>:: _M_insert(_Arg&& __v, std::true_type) { const key_type& __k = this->_M_extract()(__v); __hash_code __code = this->_M_hash_code(__k); size_type __bkt = _M_bucket_index(__k, __code); __node_type* __n = _M_find_node(__bkt, __k, __code); if (__n) return std::make_pair(iterator(__n), false); __n = _M_allocate_node(std::forward<_Arg>(__v)); return std::make_pair(_M_insert_unique_node(__bkt, __code, __n), true); } // Insert v unconditionally. template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> template<typename _Arg> typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>::iterator _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>:: _M_insert(_Arg&& __v, std::false_type) { // First compute the hash code so that we don't do anything if it // throws. __hash_code __code = this->_M_hash_code(this->_M_extract()(__v)); // Second allocate new node so that we don't rehash if it throws. __node_type* __node = _M_allocate_node(std::forward<_Arg>(__v)); return _M_insert_multi_node(__code, __node); } template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>::iterator _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>:: erase(const_iterator __it) { __node_type* __n = __it._M_cur; std::size_t __bkt = _M_bucket_index(__n); // Look for previous node to unlink it from the erased one, this // is why we need buckets to contain the before begin to make // this search fast. __node_base* __prev_n = _M_get_previous_node(__bkt, __n); return _M_erase(__bkt, __prev_n, __n); } template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>::iterator _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>:: _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n) { if (__prev_n == _M_buckets[__bkt]) _M_remove_bucket_begin(__bkt, __n->_M_next(), __n->_M_nxt ? _M_bucket_index(__n->_M_next()) : 0); else if (__n->_M_nxt) { size_type __next_bkt = _M_bucket_index(__n->_M_next()); if (__next_bkt != __bkt) _M_buckets[__next_bkt] = __prev_n; } __prev_n->_M_nxt = __n->_M_nxt; iterator __result(__n->_M_next()); _M_deallocate_node(__n); --_M_element_count; return __result; } template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>::size_type _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>:: _M_erase(std::true_type, const key_type& __k) { __hash_code __code = this->_M_hash_code(__k); std::size_t __bkt = _M_bucket_index(__k, __code); // Look for the node before the first matching node. __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code); if (!__prev_n) return 0; // We found a matching node, erase it. __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt); _M_erase(__bkt, __prev_n, __n); return 1; } template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>::size_type _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>:: _M_erase(std::false_type, const key_type& __k) { __hash_code __code = this->_M_hash_code(__k); std::size_t __bkt = _M_bucket_index(__k, __code); // Look for the node before the first matching node. __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code); if (!__prev_n) return 0; // _GLIBCXX_RESOLVE_LIB_DEFECTS // 526. Is it undefined if a function in the standard changes // in parameters? // We use one loop to find all matching nodes and another to deallocate // them so that the key stays valid during the first loop. It might be // invalidated indirectly when destroying nodes. __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt); __node_type* __n_last = __n; std::size_t __n_last_bkt = __bkt; do { __n_last = __n_last->_M_next(); if (!__n_last) break; __n_last_bkt = _M_bucket_index(__n_last); } while (__n_last_bkt == __bkt && this->_M_equals(__k, __code, __n_last)); // Deallocate nodes. size_type __result = 0; do { __node_type* __p = __n->_M_next(); _M_deallocate_node(__n); __n = __p; ++__result; --_M_element_count; } while (__n != __n_last); if (__prev_n == _M_buckets[__bkt]) _M_remove_bucket_begin(__bkt, __n_last, __n_last_bkt); else if (__n_last && __n_last_bkt != __bkt) _M_buckets[__n_last_bkt] = __prev_n; __prev_n->_M_nxt = __n_last; return __result; } template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> typename _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>::iterator _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>:: erase(const_iterator __first, const_iterator __last) { __node_type* __n = __first._M_cur; __node_type* __last_n = __last._M_cur; if (__n == __last_n) return iterator(__n); std::size_t __bkt = _M_bucket_index(__n); __node_base* __prev_n = _M_get_previous_node(__bkt, __n); bool __is_bucket_begin = __n == _M_bucket_begin(__bkt); std::size_t __n_bkt = __bkt; for (;;) { do { __node_type* __tmp = __n; __n = __n->_M_next(); _M_deallocate_node(__tmp); --_M_element_count; if (!__n) break; __n_bkt = _M_bucket_index(__n); } while (__n != __last_n && __n_bkt == __bkt); if (__is_bucket_begin) _M_remove_bucket_begin(__bkt, __n, __n_bkt); if (__n == __last_n) break; __is_bucket_begin = true; __bkt = __n_bkt; } if (__n && (__n_bkt != __bkt || __is_bucket_begin)) _M_buckets[__n_bkt] = __prev_n; __prev_n->_M_nxt = __n; return iterator(__n); } template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> void _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>:: clear() noexcept { _M_deallocate_nodes(_M_begin()); __builtin_memset(_M_buckets, 0, _M_bucket_count * sizeof(__bucket_type)); _M_element_count = 0; _M_before_begin()._M_nxt = nullptr; } template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> void _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>:: rehash(size_type __n) { const __rehash_state& __saved_state = _M_rehash_policy._M_state(); std::size_t __buckets = std::max(_M_rehash_policy._M_bkt_for_elements(_M_element_count + 1), __n); __buckets = _M_rehash_policy._M_next_bkt(__buckets); if (__buckets != _M_bucket_count) _M_rehash(__buckets, __saved_state); else // No rehash, restore previous state to keep a consistent state. _M_rehash_policy._M_reset(__saved_state); } template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> void _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>:: _M_rehash(size_type __n, const __rehash_state& __state) { __try { _M_rehash_aux(__n, __unique_keys()); } __catch(...) { // A failure here means that buckets allocation failed. We only // have to restore hash policy previous state. _M_rehash_policy._M_reset(__state); __throw_exception_again; } } // Rehash when there is no equivalent elements. template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> void _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>:: _M_rehash_aux(size_type __n, std::true_type) { __bucket_type* __new_buckets = _M_allocate_buckets(__n); __node_type* __p = _M_begin(); _M_before_begin()._M_nxt = nullptr; std::size_t __bbegin_bkt = 0; while (__p) { __node_type* __next = __p->_M_next(); std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n); if (!__new_buckets[__bkt]) { __p->_M_nxt = _M_before_begin()._M_nxt; _M_before_begin()._M_nxt = __p; __new_buckets[__bkt] = &_M_before_begin(); if (__p->_M_nxt) __new_buckets[__bbegin_bkt] = __p; __bbegin_bkt = __bkt; } else { __p->_M_nxt = __new_buckets[__bkt]->_M_nxt; __new_buckets[__bkt]->_M_nxt = __p; } __p = __next; } _M_deallocate_buckets(_M_buckets, _M_bucket_count); _M_bucket_count = __n; _M_buckets = __new_buckets; } // Rehash when there can be equivalent elements, preserve their relative // order. template<typename _Key, typename _Value, typename _Alloc, typename _ExtractKey, typename _Equal, typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, typename _Traits> void _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, _RehashPolicy, _Traits>:: _M_rehash_aux(size_type __n, std::false_type) { __bucket_type* __new_buckets = _M_allocate_buckets(__n); __node_type* __p = _M_begin(); _M_before_begin()._M_nxt = nullptr; std::size_t __bbegin_bkt = 0; std::size_t __prev_bkt = 0; __node_type* __prev_p = nullptr; bool __check_bucket = false; while (__p) { __node_type* __next = __p->_M_next(); std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n); if (__prev_p && __prev_bkt == __bkt) { // Previous insert was already in this bucket, we insert after // the previously inserted one to preserve equivalent elements // relative order. __p->_M_nxt = __prev_p->_M_nxt; __prev_p->_M_nxt = __p; // Inserting after a node in a bucket require to check that we // haven't change the bucket last node, in this case next // bucket containing its before begin node must be updated. We // schedule a check as soon as we move out of the sequence of // equivalent nodes to limit the number of checks. __check_bucket = true; } else { if (__check_bucket) { // Check if we shall update the next bucket because of // insertions into __prev_bkt bucket. if (__prev_p->_M_nxt) { std::size_t __next_bkt = __hash_code_base::_M_bucket_index(__prev_p->_M_next(), __n); if (__next_bkt != __prev_bkt) __new_buckets[__next_bkt] = __prev_p; } __check_bucket = false; } if (!__new_buckets[__bkt]) { __p->_M_nxt = _M_before_begin()._M_nxt; _M_before_begin()._M_nxt = __p; __new_buckets[__bkt] = &_M_before_begin(); if (__p->_M_nxt) __new_buckets[__bbegin_bkt] = __p; __bbegin_bkt = __bkt; } else { __p->_M_nxt = __new_buckets[__bkt]->_M_nxt; __new_buckets[__bkt]->_M_nxt = __p; } } __prev_p = __p; __prev_bkt = __bkt; __p = __next; } if (__check_bucket && __prev_p->_M_nxt) { std::size_t __next_bkt = __hash_code_base::_M_bucket_index(__prev_p->_M_next(), __n); if (__next_bkt != __prev_bkt) __new_buckets[__next_bkt] = __prev_p; } _M_deallocate_buckets(_M_buckets, _M_bucket_count); _M_bucket_count = __n; _M_buckets = __new_buckets; } _GLIBCXX_END_NAMESPACE_VERSION } // namespace std #endif // _HASHTABLE_H